Layered Learning

نویسندگان

  • Peter Stone
  • Manuela M. Veloso
چکیده

This paper presents layered learning, a hierarchical machine learning paradigm. Layered learning applies to tasks for which learning a direct mapping from inputs to outputs is intractable with existing learning algorithms. Given a hierarchical task decomposition into subtasks, layered learning seamlessly integrates separate learning at each subtask layer. The learning of each subtask directly facilitates the learning of the next higher subtask layer by determining at least one of three of its components: (i) the set of training examples; (ii) the input representation; and/or (iii) the output representation. We introduce layered learning in its domain-independent general form. We then present a full implementation in a complex domain, namely simulated robotic soccer. In Proceedings of the Eleventh European Conference on Machine Learning (ECML-2000)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing and explaining the dimensions and components of the layered curriculum in line with the student-centered approach

To create a learner-centered learning environment, teacher and students must add new dimensions to their traditional roles. This research was conducted qualitatively and with thematic analysis approach. To achieve the set goal, a structured interview was conducted with curriculum experts. The samples were selected in a purposeful manner based on specific criteria. Data analysis started from the...

متن کامل

UT Austin Villa 2014: RoboCup 3D Simulation League Champion via Overlapping Layered Learning

Layered learning is a hierarchical machine learning paradigm that enables learning of complex behaviors by incrementally learning a series of sub-behaviors. A key feature of layered learning is that higher layers directly depend on the learned lower layers. In its original formulation, lower layers were frozen prior to learning higher layers. This paper considers an extension to the paradigm th...

متن کامل

Overlapping layered learning

Layered learning is a hierarchical machine learning paradigm that enables learning of complex behaviors by incrementally learning a series of sub-behaviors. A key feature of layered learning is that higher layers directly depend on the learned lower layers. In its original formulation, lower layers were frozen prior to learning higher layers. This article considers a major extension to the para...

متن کامل

A Study of Layered Learning Strategies Applied to Individual Behaviors in Robot Soccer

Hierarchical task decomposition strategies allow robots and agents in general to address complex decision-making tasks. Layered learning is a hierarchical machine learning paradigm where a complex behavior is learned from a series of incrementally trained sub-tasks. This paper describes how layered learning can be applied to design individual behaviors in the context of soccer robotics. Three d...

متن کامل

Layered Learning in Genetic Programming for a Cooperative Robot Soccer Problem

We present an alternative to standard genetic programming (GP) that applies layered learning techniques to decompose a problem. GP is applied to subproblems sequentially, where the population in the last generation of a subproblem is used as the initial population of the next subproblem. This method is applied to evolve agents to play keepaway soccer, a subproblem of robotic soccer that require...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000